If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+80x+1344=0
a = -16; b = 80; c = +1344;
Δ = b2-4ac
Δ = 802-4·(-16)·1344
Δ = 92416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{92416}=304$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-304}{2*-16}=\frac{-384}{-32} =+12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+304}{2*-16}=\frac{224}{-32} =-7 $
| 2x-2=14-2x | | x=$0.12x+$3.07 | | x+x+43=103 | | 7x-9=x-2 | | 90=1/2h(2+7) | | 2/3z=25 | | 3x+7/12-4+14x/3=7/12 | | A=1/2h(B+B) | | 18/53u=2 | | 0.06(2-x)+0.1x=0.09 | | 26v^2-47v+12=0 | | 25/28v=2 | | 60=462+22h | | 5t/7=11 | | 19/28m=1 | | 6z=11 | | -(-12+-3x)=x+6 | | -(a-1)+3a=-2+2a | | x=5=7 | | 17n=16 | | x+77=110 | | 2/7z=11 | | 3.35=2.35+0.25x | | 9+2(4x-3)=10x-1 | | 15/9=14c | | 18h=258 | | x+(2x-5)+(2x+5)=180 | | 20x/27=1 | | 12-x=14-x | | 7x+2(-4x+2)=-8 | | 15=4(2t+3)-3(4t-7)+10 | | 2y+8=8+3(6y+2) |